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Abstract
A Darboux transformation is constructed for the modified Veselov–Novikov
equation. By means of the Darboux transformation, two families of explicit
solutions of this equation are given.

PACS numbers: 02.30.−f, 02.40.Hw

1. Introduction

Solitons and geometry are closely connected. Many soliton equations or integrable systems
have their origins in classical differential geometry. The best-known example, probably the
first one, is the celebrated sine–Gordon equation, which was used to describe surfaces with
constant negative Gaussian curvature. Another example is the binormal flow of a curve in R

3.
It essentially appeared in the study of vortex filaments in the paper of da Rios [1]. Much later,
Hasimoto [2] showed the equivalence of this system with the non-linear Schrödinger equation.
For more references on the interrelation between geometry and integrable systems, we refer
the reader to the recent books (see [3, 4] and the references therein).

Recently, a class of integrable deformations of surfaces immersed in R
3 was defined by

using the generalized Weierstrass representation in [5]. The main observation of that paper
is that the operator from the linear problem of the generalized Weierstrass representation
coincides with the operator LmNV to which the modified Veselov–Novikov (mVN) hierarchy
is attached. Thus, the geometrical significance of the mVN equation is established and it is
important to construct the explicit solutions for this equation. It is well known that one of the
most powerful techniques leading to explicit solutions for an integrable equation is Darboux
transformation (DT) [8]. In this paper we construct a binary DT for the mVN equation.

This paper is organized as follows. In section 2 we will give a brief review of the mVN
equation. In section 3, the derivation of the DT for the mVN equation will be given. Section 4
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contains the explicit solutions of the mVN equation, which are generated by means of the
DT. We give two examples: one is constructed from the simplest case: zero background
U(x, y, t) = 0, the other from a particular solution of the MKdV equation. We present our
conclusions and discussion in section 5.

2. The mVN equation and its Lax representation

The mVN equation is a natural two-dimensional generalization of MKdV equation. The MKdV
equation reads as

Ut = 1
4Uxxx + 6U 2Ux, (1)

while the mVN equation is [6]

Ut = (Uzzz + 3UzV + 3
2UVz) + (Uz̄z̄z̄ + 3Uz̄V̄ + 3

2UV̄z̄), Vz̄ = (U 2)z. (2)

It is known that the mVN equation is represented by a Manakov triad; that is, it has the following
operator formalism:

Lt + [L,A] − BL = 0, (3)

where

L =
(
∂ −U
U ∂̄

)
,

A = ∂3 + ∂̄3 + 3

(
0 −Uz
0 V

)
∂ + 3

(
V̄z̄ 0
Uz̄ 0

)
∂̄ +

3

2

(
V̄z̄ 2UV

−2UV̄ Vz

)
,

B = 3

(
0 Uz

−Uz 0

)
∂ + 3

(
0 Uz̄

−Uz̄ 0

)
∂̄

+ 3

(
0 Uz̄z̄ + U(V̄ − V )

−Uzz − UV + UV̄ 0

)
,

∂ = 1
2 (∂x − i∂y), ∂̄ = 1

2 (∂x + i∂y).

In [7], it is shown that the system (2) is related to the Veselov–Novikov equation in a similar
manner to how the MKdV system is related to the KdV system.

Remarks.

(1) If the function U depends only on one space variable x, the mVN equation (2) reduces to
the MKdV equation (1).

(2) The field variable U in equation (2) is assumed to be a real-valued function.

Since the mVN equation possesses the operator representation (3), it deforms the kernel
of the operator L via the equation

L� = 0

�t = A� (4)

where

� =
(
ψ1

ψ2

)
(5)

is known as a wavefunction.
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3. Darboux transformation of mVN equation

To construct a DT for the mVN equation, we find that it is convenient to transform the Lax
pair (4) into the following form:

�x = J�y + P�

�t = −J�yyy − P�yy +Q�y + S�
(6)

where

J = i

(
1 0
0 −1

)
≡ iσ3, P =

(
0 2U

−2U 0

)
≡ 2iUσ2,

Q =
(−iU 2 + 3iV̄ iUx − 2Uy

iUx + 2Uy iU 2 − 3iV

)
,

S =
(

(− 5
2 iUy − 3

2Ux)U + 3
2 V̄z̄ −2U 3 − 2Uyy + 1

2Uxx + i
2Uxy + 3U(V̄ + V )

2U 3 + 2Uyy − 1
2Uxx + i

2Uxy − 3U(V̄ + V ) ( 5
2 iUy − 3

2Ux)U + 3
2Vz

)
,

and

σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are Pauli matrices.

We notice that the matrices J , P ,Q and S have the following involution property:(
0 −1
1 0

)
X

(
0 1

−1 0

)
= X̄, (7)

where X is one of J, P,Q, S. It is clear that if

� =
(
ψ1

ψ2

)
(8)

is a vector solution of (6) then

�∗ =
(−ψ̄2

ψ̄1

)
(9)

also satisfies (6). Hence from a vector solution we obtain a matrix solution of (6):(
ψ1 −ψ̄2

ψ2 ψ̄1

)
, (10)

which we also denote by � for short.
We now consider the construction of a DT for the mVN equation.
To this end, we introduce the linear system formally conjugate to (6):

�x = �yJ T +�P T

�t = −�yyyJ T −�yyP T +�yQ
T +�ST.

(11)

It is easy to see that if � is a matrix solution of (6), then � = �T is a matrix solution of (11).
Now with a solution� of the linear system (6) and a solution� of the linear system (11),

we introduce a 1-form

ω(�,�) = �� dy + i�σ3� dx +

[
−i(�yyσ3� +�σ3�yy −�yσ3�y)

+ �yP� +�P T�y +�

(−iU 2 + 3iV̄ iUx
iUx iU 2 − 3iV

)
�

]
dt, (12)

where �, � are matrix solutions of (6), (11) respectively. It is tedious but otherwise
straightforward to show that the 1-form defined above is closed, that is
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Lemma 1. dω(�,�) = 0.

Proof. By straightforward computation. �

Thus, the following matrices:

�̂(�,�) =
∫ M

M0

ω =
∫ (x,y,z)

(x0,y0,z0)

ω, (13)

and

�(�,�) = �̂(�,�) +

(
a + bi ci
ci a − bi

)
(14)

are well defined, where a, b and c are real constants. In the following, we will take � as a
matrix solution of (6) of the form of (10).

Let�0 be any matrix solution of (6) of the form of (10), and introduce the matricesK and
σ by

K ≡ �0�
−1(�T

0 , �0)�
T
0 =

(
k11 k12

k21 k22

)
,

σ ≡ �0y�
−1
0 =

(
σ11 σ12

σ21 σ22

)
.

Lemma 2. K and σ defined above have to be in the following forms:

K =
(
k11 k12

k12 k̄11

)
, σ =

(
σ11 −σ̄21

σ21 σ̄11

)

where k12 = iλ and λ is a real constant.

Proof. From the involution property of J , P ,Q, S and �0, we find

K̄ =
(

0 −1
1 0

)
K

(
0 1

−1 0

)
, (15)

that is, K also possesses the involution property. Meanwhile, K is symmetric:

K = KT. (16)

So we have

k̄11 = k22, k̄21 = −k12, k12 = k21 = iλ.

This proves the result for K . Similarly, the result for σ can be proved. �

Our DT is now conveniently formulated as

Theorem 1. Let � and �0 be the solutions of the linear system (6). Let �(�T
0 , �0) and

�(�T
0 , �) be given by (14) with � = �T

0 , � = �0 and � = �T
0 and � = �, respectively.

Then if �−1(�T
0 , �0) is invertible, the new matrix of wavefunctions defined by

�̃ = � −�0�
−1(�T

0 , �0)�(�
T
0 , �) (17)

satisfies (6) with the potential U,V replaced by

Ũ = U − λ = U + ik12, (18)

Ṽ = V + 2iUk12 + k̄2
11 − 2(σ21k21 + σ̄11k̄11). (19)
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Proof. It is quite easy to verify that the transformed quantities do fulfil the first equation of (6).
However, the verification of the second equation of (6) is too complex to do by hand. We did
check the validity by means of MAPLE. �

Thus, we establish a DT for the mVN equation. It is easily seen that this DT is a binary DT.
As usual, our DT can be iterated. Let �j (j = 1, . . . , n) be n matrix solutions of the

linear system (6) in the form (10). Then the new matrix wavefunction

�̃ = � −
n∑
j=1

aj�(�
T
j , �)

solves the linear system (6) with

P̃ = P +

[
J,

n∑
j=1

n∑
k=1

aj�(�
T
j , �k)a

T
k

]
,

where the aj are given by the following linear system:
n∑
j=1

aj�(�
T
j , �k) = �k, k = 1, . . . , n.

4. Explicit solutions of mVN equation

In this section, we generate explicit solutions for the mVN equation. We present two examples
here.

Example 1. As the first example, we generate the solutions by the above DT for the simplest
case: U(x, y, t) = 0. Then V (x, y, t) = 0. The linear system (6) in this case is

�x = J�y, �t = −J�yyy. (20)

We take (
ψ1

ψ2

)
=
(

eαx−iαy+α3t

eβx+iβy+β3t

)
, (21)

as a vector solution, where α, β are real constants. The matrix solution is found to be

�0(x, y, t) =
(
ψ1 −ψ̄2

ψ2 ψ̄1

)
=
(

eαx−iαy+α3t −eβx−iβy+β3t

eβx+iβy+β3t eαx+iαy+α3t

)
; (22)

we obtain

Ũ = 1

det�

[
(e2(αx+α3t) − e2(βx+β3t))

(
2

α + β
− 2

α + β
cos(α + β)ye(α+β)x+(α3+β3)t + c

)

−
(

1

α
− 1

β
− 1

α
e2(αx+α3t) cos 2αy +

1

β
e2(βx+β3t) cos 2βy − 2b

)
cos(β − α)y

−
(

1

α
e2(αx+α3t) sin 2αy +

1

β
e2(βx+β3t) sin 2βy + 2a

)
sin(β − α)y

]
with

det� = det�(�T
0 , �0) =

[
2

α + β
− 2

α + β
cos(α + β)ye(α+β)x+(α3+β3)t + c

]2

+

[
− 1

2α
+

1

2β
+

1

2α
e2(αx+α3t) cos 2αy − 1

2β
e2(βx+β3t) cos 2βy + b

]2

+

[
1

2α
e2(αx+α3t) sin 2αy +

1

2β
e2(βx+β3t) sin 2βy + a

]2

is a family solution of the mVN equation involving three parameters a, b, c.
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Example 2. Since the MKdV equation is a dimensional reduction of the mVN equation, we
may construct new solutions for the mVN equation based on the solutions of the MKdV
equation. It is easy to see that

U(x, t) = sin(x + t
2 )

2
√

2(
√

2 − sin(x + t
2 ))

(23)

is a solution of MKdV equation (1). The corresponding vector wavefunction is(
ψ1

ψ2

)
=
(√√

2 − sin(x + t
2 )− cos(x + t

2 )√√
2 − sin(x + t

2 ) + cos(x + t
2 )

)
e

iy
2√

2 − sin(x + t
2 )

(24)

with U(x, t) and V = U 2 satisfying the linear system (6). The matrix solution in the meaning
of (10) is

�0(x, y, t) = 1√
2 − sin(x + t

2 )

×


√√

2 − sin(x + t
2 )− cos(x + t

2 )e
iy
2 −

√√
2 − sin(x + t

2 ) + cos(x + t
2 )e

− iy
2√√

2 − sin(x + t
2 ) + cos(x + t

2 )e
iy
2

√√
2 − sin(x + t

2 )− cos(x + t
2 )e

− iy
2


 .

Now by (13) and (14), we obtain

�̂(�T
0 , �0) = −2i


 e

iy
2√

2−sin(x+ t
2 )

−
√

2
2 − cos(x+ t

2 )√
2−sin(x+ t

2 )
−

√
2

2

− cos(x+ t
2 )√

2−sin(x+ t
2 )

−
√

2
2 − e

−iy
2√

2−sin(x+ t
2 )

+
√

2
2


 , (25)

�(�T
0 , �0) = −2i


 e

iy
2√

2−sin(x+ t
2 )

+ a + bi − cos(x+ t
2 )√

2−sin(x+ t
2 )

+ c

− cos(x+ t
2 )√

2−sin(x+ t
2 )

+ c − e
−iy

2√
2−sin(x+ t

2 )
− a + bi


 , (26)

where a, b and c are any real constants. We use the notation

' ≡ det�(�T, �)

= 4

[[
cos(x + t

2 )√
2 − sin(x + t

2 )
− c

]2

+

[
sin y√

2 − sin(x + t
2 )

+ b

]2

+

[
cos y√

2 − sin(x + t
2 )

+ a

]2]
,

�−1(�T
0 , �0) = 2i

'


 e

−iy
2√

2−sin(x+ t
2 )

+ a − bi − cos(x+ t
2 )√

2−sin(x+ t
2 )

+ c

− cos(x+ t
2 )√

2−sin(x+ t
2 )

+ c − e
iy
2√

2−sin(x+ t
2 )

− a − bi


 .

Then we have

k12 = 2i

'(
√

2 − sin(x + t
2 ))

2

[
2

(√
2 sin

(
x +

t

2

)
− 1

)(
1√

2 − sin(x + t
2 )

+ a cos y + b sin y

)

− 2

(− cos(x + t
2 )√

2 − sin x
+ c

)
cos

(
x +

t

2

)]
,

and

Ũ = U(x, t) + ik12 = sin(x + t
2 )

2
√

2(
√

2 − sin(x + t
2 ))

+ ik12

is a double-periodic solution of the mVN equation including three constants a, b and c.
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In the special case of b = 0, a = 0, we obtain a family solution of the MKdV equation (1)
depending on a parameter c. If we further put c = 0, we have

Ũ = − sin(x + t
2 )

2
√

2(
√

2 + sin(x + t
2 ))
.

5. Conclusions

In this paper we present a binary DT for the mVN equation. We also calculate the solutions
of the mVN equation using our DT by dressing the zero-background and MKdV solutions.

Keeping in mind the geometrical background of the mVN equation, it will be interesting to
construct solutions based on more sophisticated seeds and study their geometrical implications.
This may be considered in a separate work.
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